Criteria for Applying the Lucas-Washburn Law

نویسندگان

  • Kewen Li
  • Danfeng Zhang
  • Huiyuan Bian
  • Chao Meng
  • Yanan Yang
چکیده

Spontaneous imbibition happens in many natural and chemical engineering processes in which the mean advancing front usually follows Lucas-Washburn's law. However it has been found that the scaling law does not apply in many cases. There have been few criteria to determine under what conditions the Washburn law works. The effect of gravity on spontaneous imbibition in porous media was investigated both theoretically and experimentally. The mathematical model derived analytically was used to calculate the imbibition rates in porous media with different permeabilities. The results demonstrated that the effect of gravity on spontaneous imbibition was governed by the hydraulic conductivity of the porous media (permeability of the imbibition systems). The criteria for applying the Lucas-Washburn law have been proposed. The effect of gravity becomes more apparent with the increase in permeability or with the decrease in CGR number (the ratio of capillary pressure to gravity forces) and may be ignored when the CGR number is less than a specific value N(*)(cg) ≅ 3.0. The effect of gravity on imbibition in porous media can be modeled theoretically. It may not be necessary to conduct spontaneous imbibition experiments horizontally in order to exclude the effect of gravity, as has been done previously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Practical observation of deviation from Lucas–Washburn scaling in porous media

This work analyses the applicability of the Lucas–Washburn equation to experimental observations of imbibition into real network structures. The experimental pore structures used in this study are constructed from tablets of two finely ground calcium carbonates, with defined differences in particle size distribution. These are compressed under a range of different applied pressures to achieve a...

متن کامل

Capillary rise in nanopores: molecular dynamics evidence for the Lucas-Washburn equation.

When a capillary is inserted into a liquid, the liquid will rapidly flow into it. This phenomenon, well studied and understood on the macroscale, is investigated by molecular dynamics simulations for coarse-grained models of nanotubes. Both a simple Lennard-Jones fluid and a model for a polymer melt are considered. In both cases after a transient period (of a few nanoseconds) the meniscus rises...

متن کامل

Supplementary Information: dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics

We performed an experiment similar to that of Figure 2 but using saturated sugar solution as the wicking fluid. This system suppresses dissolution of the dried sugar, thus the pore structure of the strips should remain constant during wet-out, and the framework of the conventional Lucas-Washburn relationship should apply (as it does for untreated strips, so long as the meaning of r is not over-...

متن کامل

An analytic solution of capillary rise restrained by gravity.

We derive an analytic solution for the capillary rise of liquids in a cylindrical tube or a porous medium in terms of height h as a function of time t. The implicit t(h) solution by Washburn is the basis for these calculations and the Lambert W function is used for its mathematical rearrangement. The original equation is derived out of the 1D momentum conservation equation and features viscous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015